

Srilatha Edupuganti¹, Christopher B. Hurt², Kathryn E. Stephenson³, Yunda Huang⁴, Carmen A. Paez⁴, Theresa Gamble⁵, Chenchen Yu⁴, Catherine Yen⁶, Stephanie Regenold⁶, Wairimu Chege⁶, Raphael J. Landovitz⁷, Kenneth H. Mayer⁸, Marc Siegel⁹, Magdalena E. Sobieszczyk¹⁰, Stephen R. Walsh¹¹, Jack Heptinstall¹², Kelly Seaton¹², David C. Montefiori¹², Georgia Tomaras¹², Lucio Gama^{6,13}, and Dan Barouch³ for the HVTN 136/HPTN 092 Study Team

¹Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States, ²Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, NC, United States, ³Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States, ⁴Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States, ⁵FHI 360, Durham, NC, United States, ⁶National Institute of Allergy and Infectious Diseases, Rockville, MD, United States, ⁷ UCLA Center for Clinical AIDS Research & Education, Los Angeles, CA, United States, ⁸Boston-Fenway Health, Harvard Medical School, Boston, MA, United States, ⁹George Washington Medical Faculty Associates, Washington, DC, United States, ¹⁰Columbia University Irving Medical Center, New York, NY, United States, ¹¹Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States, ¹³National Institutes of Health, Vaccine Research Center, Bethesda, MD, United States

Background

Multiple broadly neutralizing antibodies (bnAbs) targeting domains of gp120 are in development for prevention of HIV-1. PGT121.414.LS, a modification of the anti-V3 glycan bnAb PGT121, potently neutralizes multiple HIV-1 clades *in vitro*. In the HVTN 136/HPTN 092 trial, we are evaluating the safety, tolerability, pharmacokinetics, and antiviral activity of the monoclonal antibody PGT121.414.LS administered alone and in combination with VRC07-523LS via intravenous (IV) or subcutaneous (SC) infusions in healthy, adult participants without HIV.

Methods

In Part A of the ongoing, phase 1 HVTN 136/HPTN 092 trial, we are assessing the safety, tolerability, and pharmacokinetics (PK) of PGT121.414.LS in 13 healthy adults without HIV (Table 1). We evaluated IV dose-escalation and SC infusion in four groups: 3 mg/kg IV (group T1, n=3), 10 mg/kg IV (T2, n=4), 30 mg/kg IV (T3, n=3) and 5 mg/kg SC (T4, n=3). In T2, 1 participant was discontinued later in the study due to ineligibility and an additional 4th participant was enrolled as a replacement. Serum concentrations of PGT121.414.LS were measured on Days 0, 1, 2, 3, 6, 14, 28, 56 and 112 after a single infusion. Noncompartmental PK analyses were performed. Part B data collection is in progress.

Table 1. HVTN 136/HPTN 092 trial study schema						
Treatment group	Number	Dose	Route	Study Product Administration Schedule		
				Month 0 (Day 0)	Month 4 (Day 112)	Month 8 (Day 224)
Part A						
Group T1	3	3 mg/kg	IV	PGT121.414.LS		
Group T2	3	10 mg/kg	IV	PGT121.414.LS		
Group T3	3	30 mg/kg	IV	PGT121.414.LS		
Group T4	3	5 mg/kg	SC	PGT121.414.LS		<u>—</u>
Part B (data not yet available)						
Group T5	10	20 mg/kg + 20 mg/kg	IV	PGT121.414.LS + VRC07-523LS	PGT121.414.LS + VRC07-523LS	PGT121.414.LS + VRC07-523LS
Group T6	10	5 mg/kg + 5 mg/kg	SC	PGT121.414.LS + VRC07-523LS	PGT121.414.LS + VRC07-523LS	PGT121.414.LS + VRC07-523LS
Total	32					

Results

In part A of the study, the median participant age was 30 years; 77% of participants were assigned female sex at birth; 15% were Black and 85% White. IV and SC infusions were safe and well-tolerated, with no related serious adverse events or dose-limiting toxicities.

- Peak concentrations after IV infusions were observed on Day 1, increasing linearly with higher doses (median = 56.7 μg/mL in T1, 164.7 μg/mL in T2 and 525.8 in T3) [Fig 1]. Peak concentrations after SC infusion were observed on Day 14 (Fig 2). On Day 112, T1, T2 and T4 concentrations were 12.1 31.3, and 13.7 μg/mL, respectively; T3 data are in progress.
- The estimated clearance for PGT121.414.LS was 0.06-0.12 liter/day in T1-T4.
- The estimated elimination half-lives for PGT121.414.LS were 3 times longer than its precursor, PGT121, with medians of 53.6-74.3 days in T1-T4.

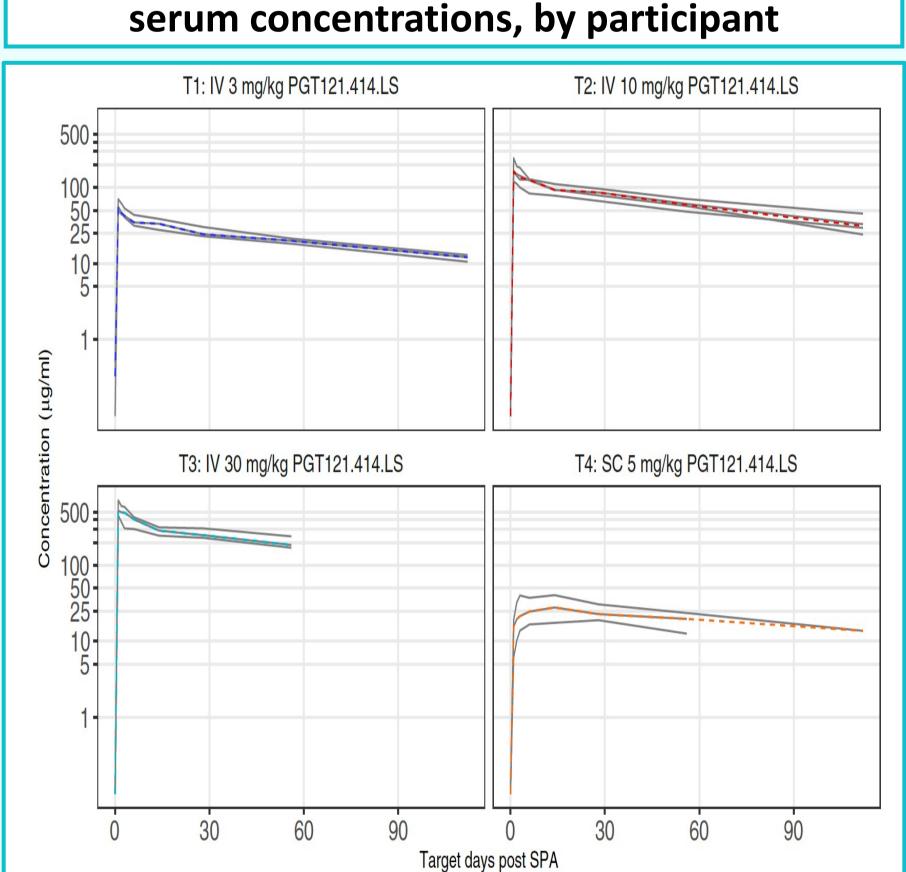
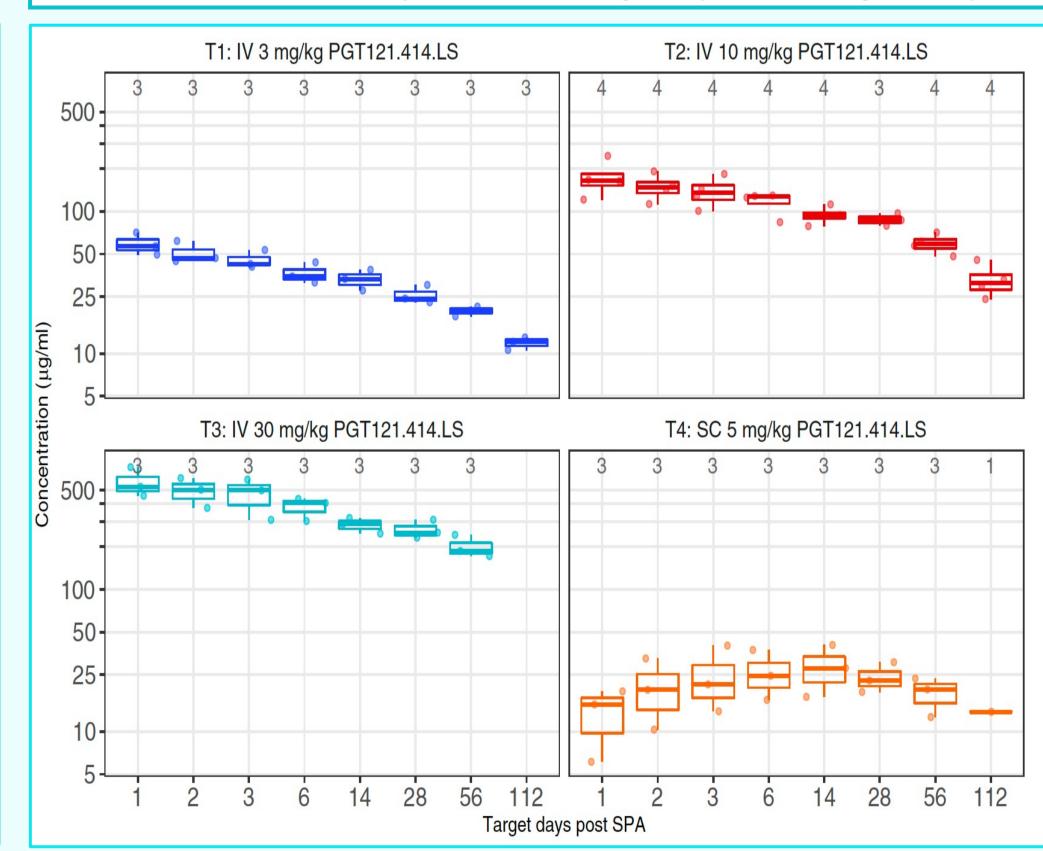



Fig 1. HVTN 136/HPTN 092 PGT121.414.LS

Color coded lines = medians; ——individual; --- group SPA= study product administration

Numbers at the top of the graph represent number of participants at each time point

SPA= study product administration

Conclusions

PGT121.414.LS was safe and well-tolerated following IV or SC infusion in healthy US adults without HIV. These preliminary safety and pharmacokinetic findings support further development of PGT121.414.LS in combination with other bnAbs for global HIV-1 prevention.

