A point-of-care triage test for HIV virological failure: filling the gaps in viral load coverage

Anna Saura-Lázaro*, Peter Bock*, Erika van den Bogaart, Jessie van Vliet, Laura Granés, Kerry Nel, Vikesh Naidoo, Yvonne Saunders, Michelle Scheepers, René Paulussen, Denise Naniche*, Elisa López-Varela*

*Authors contributed equally

Background

IFN-y-induced protein 10 (IP-10) is a chemokine strongly correlated with human immunodeficiency virus (HIV) viral load (VL). A recently developed IP-10 point of care test (POCT) could serve to triage antiretroviral (ART)-treated people living with HIV (PLHIV) for virological failure (VF) thus prioritizing scarce VL testing.

Objectives

1. To evaluate the field performance of a semi-quantitative prototype lateral flow IP-10 POCT as a screening test for VF in South Africa. 2. To assess the cost-effectiveness of implementing an IP-10 POCT in a two-step algorithm to screen for VF in ART-treated PLHIV in a low-resources and low VL coverage setting using the example of Mozambique for costs.

Field performance

Methods

Cost-effectiveness analysis

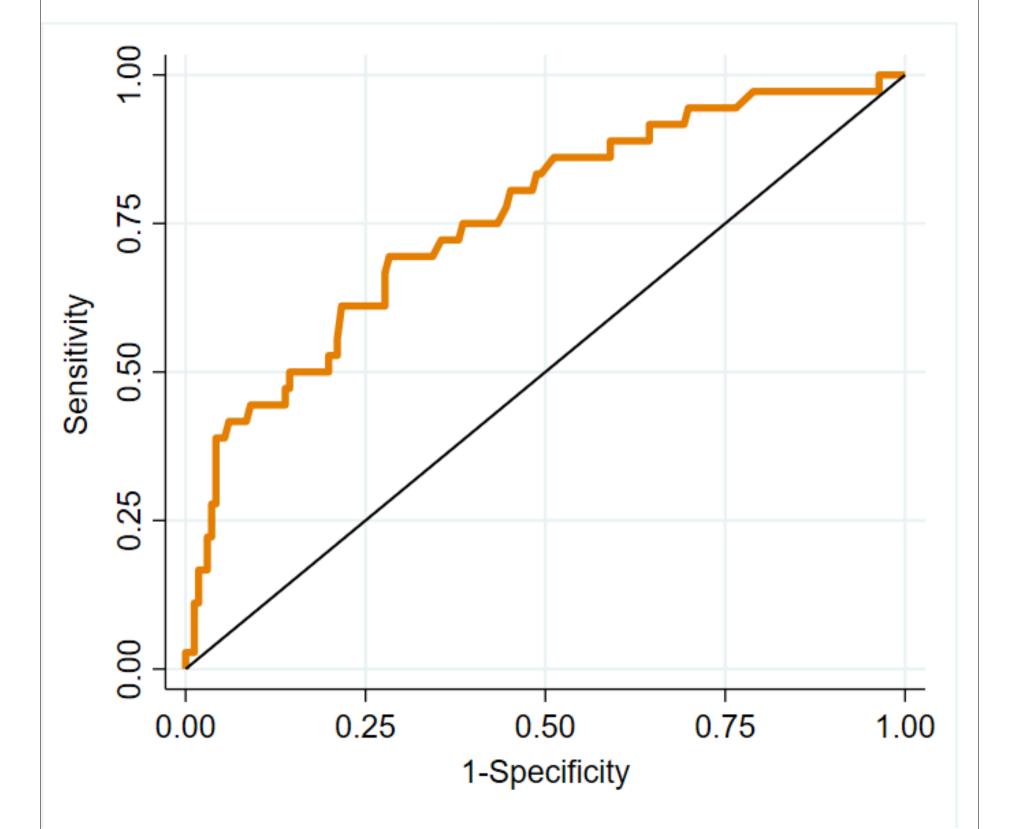
Participants and procedures:

- Enrollment of patients on ART for ≥ 1 year who attended a primary health clinic in the Western Cape.
- Collection of finger prick blood for direct application onto the IP-10 antibody-sandwich lateral flow POCT and reading the IP-10 signal with a portable Cube Reader (arbitrary units) after 20 min (index test).
- Plasma VL result at or ≤ 1 month prior to clinic visit (reference test). Analysis
- IP-10 POCT values-based model constructed to identify individuals with VF (VL>1,000 copies/mL).
- Uni-and multivariable logistic regression with penalized likelihood.
- Calculation of area under the receiver operating characteristic curves (AUC) to evaluate model prediction.

Design: A deterministic decision analysis comparing the use of VL testing only with a two-step algorithm based on IP-10 POCT screening followed by VL testing as a confirmatory test for positive results. Study population:

- A simulated cohort of 1,000 ART-treated PLHIV 18 years of age.
- 40% of VL coverage and 24% of VF prevalence.

Effectiveness outcomes and costs:


- Health effects: Disability Adjusted Life Years (DALYs) and new HIV infections averted.
- Costs to the health care provider associated with HIV, including test costs (US\$ 3 for the IP-10 POCT and US\$ 51 for the VL test), were based on Mozambique.

Time horizon: 1 year, no discount rate.

Results

Figure 1a. Performance of IP-10 POCT values models in predicting VF.

- Among the 209 participants (median age 38 years and 88% female), 18% had VF. Median IP-10 POCT values were higher among individuals with VF compared to those without (24.0 vs. 14.6; p<0.001).
- Among those individuals (n=57) with detectable VL (>50 copies/mL), IP-10 values showed a significant

				lotat						Ratio	, ,,,,,,,
Cut-off value	e Sensitivity (%)	Specificity (%) 3.5		(n = 209)		(n = 171)		(n = 37)			
7.3	100.0		IP-10 POCT values	•	•	•	•	•	•		
10.9	97.3	20.5	(n=208)	16.2	(11.9–22.8)	14.6	(11.3–20.0)	24	(17.6-36.3)	2.38*	1.66-3.40
12.0	94.6	29.2	Years since HIV								
12.8	91.9	35.1	diagnosis	7	(4–10)	6	(4-9)	8	(5–12)	1.11	1.01-1.22
13.6	88.2	40.9	Missed ART								
14.6	86.5	49.1	None	182	(87.08)	158	(91.86)	24	(64.86)	Ref.	
14.9	83.8	51.5	At least once a month	27	(12.92)		• •		• •		2 5 4 1 4 1 4
16.1	81.1	55.0	*Change by 10 units	ΖΙ	(12.72)	14	(8.14)	13	(35.14)	6.02	2.56-14.16
			IQR: Interquartile range								

moderate correlation with VL (p=0.46, p<0.001). The IP-10 POCT predicted VF with an AUC=0.76 (95% confidence interval (CI), 0.67–0.85) (figure 1a).

- Using a cut-off value of ≥12.8 (a sensitivity above 90% was prioritized), the model identified VF with 91.9% sensitivity (95% CI, 78.1%–98.3%) and 35.1% specificity (95% CI, 28.0%–42.7%) (figure 1b) resulting in a positive predictive value of 23.4% (95%CI, 16.8-31.2) and a negative predictive value of 95.2% (95%CI, 86.7–99.0) in a setting with 18% prevalence of VF.
- IP-10 POCT values, ART adherence and time since HIV diagnosis were the only factors associated with VF (table 1).
- The implementation of an IP-10 POCT triage test for VF could avert more than 30% of the DALYs associated with HIV, 8.5 out of 10 new HIV infections and savings from US\$ 46,339 to US\$86,701 to the health system per 1,000 PLHIV tested. The settings which would benefit the most are those with low VL coverage and high VF prevalence.

values.						n (%	n (%) or median (IQR)				
	Sensitivity (%)	Specificity (%)		Total \ (n = 209)		VL≤1000 copies/ml (n = 171)		VL>1000 copies/ml (n = 37)		Odds Ratio	95%CI
Cut-off value											
7.3	100.0	3.5	IP-10 POCT values	·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·		
10.9	97.3	20.5	(n=208)	16.2	(11.9-22.8)	14.6	(11.3–20.0)	24	(17.6-36.3)	2.38*	1.66-3.40
12.0	94.6	29.2	Years since HIV								
12.8	91.9	35.1	diagnosis	7	(4–10)	6	(4-9)	8	(5–12)	1.11	1.01-1.22
13.6	88.2	40.9	Missed ART								
14.6	86.5	49.1	None	182	(87.08)	158	(91.86)	24	(64.86)	Ref.	
14.9	83.8	51.5	At least once a month				• •				257171
16.1	81.1	55.0	*Change by 10 units	ΖΙ	(12.92)	14	(8.14)	13	(35.14)	6.02	2.56-14.16

Conclusions

The IP-10 POCT is an effective and cost-effective triage test for routine VL monitoring. Combining a highly sensitive, low-cost IP-10 POCT-based screening with VL testing in a two-step decision algorithm could provide a greatly needed monitoring tool in settings with low VL coverage, and result in significant improvement in ART monitoring and savings for health systems.

Presented at AIDS 2022 – The 24th International AIDS Conference

